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Some Sequential Procedures for Selecting the 
Better Bernoulli Treatment by Using a Matched 

Samples Design 
AJIT C. TAMHANE* 

The problem of selecting the better Bernoulli treatment by using 
a matched samples design is considered in the framework of 
the indifference-zone approach. In Tamhane (1980) a fixed 
sample procedure (FSP) for this problem was proposed. Here 
three sequential procedures are considered: (a) a curtailed sam- 
pling procedure (CSP), (b) a procedure based on the Wald 
sequential probability ratio test (SPRT), and (c) a procedure 
based on the 2-SPRT proposed by Lorden (1976). Comparisons 
are made between these procedures based on their expected 
total (tied and untied) sample sizes. It is pointed out that the 
CSP is the only closed procedure (in terms of the total number 
of observations) among the three. In addition, for any parameter 
configuration, the CSP is at least as efficient as the FSP, whereas 
the SPRT and 2-SPRT can be less efficient than the FSP when 
success probabilities of the treatments are close. Thus the CSP 
is a useful practical procedure. 

KEY WORDS: Ranking; Selection; Indifference-zone ap- 
proach; Curtailed sampling; Sequential probability ratio test; 2- 
Sequential probability ratio test. 

1. INTRODUCTION 

Suppose that we have two competing medical treatments and 
we wish to design a clinical trial to select the more effective 
treatment. Further suppose that the response of a patient to 
either treatment can be simply classified as a "success" or a 
"failure" (Bernoulli outcomes). The probabilities of success 
associated with the two treatments are assumed to be fixed 
throughout the trial. The treatment having the higher success 
probability is referred to as the "better" (more effective) treat- 
ment. 

In a previous article (Tamhane 1980), a fixed sample pro- 
cedure (FSP) for selecting the better treatment by using a matched 
samples design was proposed. (For a comparison of a matched 
samples design with an independent samples design, see 
McKinlay 1977.) In the present article, it is assumed that the 
patients enter the trial sequentially. Three selection procedures 
using a matched samples design in the sequential setting are 
considered: (a) a curtailed sampling procedure (CSP), (b) a 
sequential procedure based on the Wald (1947) sequential prob- 
ability ratio test (SPRT), and (c) a sequential procedure based 
on Lorden's (1976) 2-SPRT, which approximately solves the 
Kiefer-Weiss (1957) problem of minimizing the maximum ex- 
pected sample size. These sequential procedures are shown to 
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guarantee a specified requirement on the probability of a correct 
selection. The performances of these three procedures are com- 
pared in relation to the FSP based on their expected total sample 
sizes. 

A number of closed sequential procedures have been pro- 
posed in the literature to remedy some of the shortcomings of 
the Wald SPRT resulting from its open-ended nature (e.g., see 
Armitage 1975). The 2-SPRT is included as a representative 
of such closed procedures. It should be noted, however, that 
all of these procedures are really open in the present context 
because of the possibility of tied observations, which they ig- 
nore in making stopping and terminal decisions; they are closed 
only in terms of untied observations, and the SPRT is always 
open. Thus the CSP is the only truly closed sequential procedure 
among the ones considered here. 

There are some difficulties in implementing a matched sam- 
ples design in the sequential setting, particularly in applications 
involving human or animal subjects. So that sampling can be 
done sequentially, it is clearly necessary that the responses to 
the treatments be relatively quick; but equally important, it is 
also necessary that both of the responses in a matched pair be 
obtained almost simultaneously. This latter requirement pre- 
cludes, in many cases, using two different subjects who are 
matched on relevant attributes or using the same subject on two 
different occasions as a matched pair. Still, in cases in which 
experimental units come naturally in pairs (e.g., eyes or limbs 
of the same person) and the treatments do not interact, the use 
of the sequential matched samples design seems appropriate. 
An example of such a design is provided by Fertig et al. (1964), 
who reported a clinical trial in which two topical anesthetic 
drugs were compared by applying them simultaneously to the 
oral mucous membrane on the two sides of each patient's mouth, 
the drugs being allocated randomly to the two sides. After 4 
minutes each area was tested with a probe for the presence of 
topical mucosal anesthesia, and the outcome was recorded as 
a success or failure. In Section 6, their data will be used to 
demonstrate the three sequential procedures. (For additional 
references to sequential matched samples designs with Ber- 
noulli outcomes, see Armitage 1975, p. 89.) Although a hy- 
pothesis-testing approach is employed in these applications, the 
underlying objective in many cases is selection of the better 
treatment, to which goal the present article is devoted. 

2. FORMULATION OF THE 
PROBABILITY REQUIREMENT 

To formulate a precise probability requirement, let us first 
introduce some notation that is similar to that in Tamhane (1980). 
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Let T, and T2 denote the two treatments, and let 7cij denote the 
probability that a matched observation results in outcome i on 
T, and outcome j on T2 (i, j = 0, 1), where 1 denotes a success 
and 0 denotes a failure; E Enjj = 1. Let p = TflI + Tho and 
P2 = 7EI + 7Col be the success probabilities of T1 and T2, 
respectively, and let P[l' P[2] denote the ordered pi. The 7% 
are assumed to be unknown, but it is assumed that the exper- 
imenter is able to specify an upper bound 7* (0 < r* ? 1) on 
the probability TC = 7C + 7C0I of an untied observation. (We 
can regard T as a measure of how poorly the pairs are matched. 
If the experimenter thinks that matching is good, then he or 
she will specify a small 7r* and vice versa.) 

It is desired to select the treatment associated with P[2], the 
better treatment. Selection of the better treatment is referred to 
as a correct selection. Attention is restricted to procedures that 
guarantee the following probability requirement: 

Pr(correct selection) 2 p* 

whenever P[21 - P[11 = > 2 * 

and 7 10 + 7O I = < 'E, (2.1) 

where {17*, 6*, P*} are preassigned constants, 0 < 7* ? 1, 
o < * ? 7C*, and 2 < P* < 1. 

3. CURTAILED SAMPLING PROCEDURE 

3.1 Description of the Procedure 

Let X(7) denote the number of trials that result in outcome i 
on T, and outcome j on T2 (i, j = 0, 1) when m 2 1 matched 
observations have been taken on the two treatments. In the 
following, let n denote the fixed sample size required by the 
FSP to guarantee (2.1) [a table of n for selected (7r*, 6*) and 
P* = .90 and .95 is given in Tamhane 1980]. The CSP operates 
as follows: Continue taking one matched observation at a time 
on T, and T2 until the first m ' n - 1 for which 

JX(m) - x01 I > n - m (3.1) 

holds. Stop sampling and select the treatment associated with 
max[X(m), X(m)]. If (3.1) does not hold for any m ? n - 1, 
then stop sampling with the nth observation and make the 
selection as in the FSP; that is, select T, (T2) if X 01 > X( 
[X(l? < X( ] and break the tie at random if X(lO = Xg?l. 

3.2 Probability of a Correct Selection 

The main result of this section is summarized in the following 
theorem. 

Theorem 1. For any parameter values 7ij (i, j = 0, 1), we 
have 

Pr(correct selection |CSP) 

= Pr(correct selection I FSP) (3.2) 

when both the CSP and FSP are based on the same n. In 
particular, the CSP guarantees the probability requirement (2.1) 
if and only if the FSP does. 

Proof. The proof follows from theorem 5.1 of Bechhofer 
and Kulkarni ( 1982). 

Remark 1. The first draft of this article contained a proof 

of Theorem 1 based on random walk arguments. Later, 
Bechhofer and Kulkarni (1982) and Jennison (1983) generalized 
the result of Theorem 1 to more general settings (more than 
two treatments and general sampling strategies with the only 
restriction that no more than n observations be taken on any 
treatment). 

Remark 2. This theorem shows that the CSP attains the 
same probability of a correct selection as does the FSP at every 
parameter configuration when both are based on the same sam- 
ple size n. The sample size n may be selected without any 
reference to the indifference-zone probability requirement (2.1) 
(e.g., n may be selected based on economic considerations). 
The theorem enables us to calculate the exact probability of a 
correct selection attained by the CSP at any parameter config- 
uration by using the corresponding formula [see eqs. (3.1) and 
(3.2) of Tamhane 1980] for the FSP. 

3.3 Expected Sample Size 

Let N denote the number of steps required until termination, 
and E(N I CSP), the expected sample size required by the CSP 
based on sample size = n. We see that the upper limit on N 
is n and the lower limit on N is no, where nO = n/2 if n is even 
and nO = (n + 1)/2 if n is odd. Thus 

1 ? nl [E(N I CSP)] ? 2. (3.3) 

The quantity E(N I CSP) can be evaluated by the usual method 
of solving recursively a system of difference equations obtained 
by considering the stopping times of the random walk Ym - 

0- X1,; here YO- 0 and at each step Ym goes up one unit 
with probability 7ro, goes down one unit with probability 7Cm, 

and stays unchanged with probability 1 - 7t. A direct approach 
is employed here, which exploits the fact that because of the 
unit slopes of the stopping boundaries (3.1), once the random 
walk hits a boundary, it must either stay on it or exit outside. 
Thus the calculation of the first passage-time probabilities [given 
by (3.6) below] is greatly simplified. 

Let um denote the probability that the random walk Ym stops 
at the mth step with the stopping boundaries given by (3.1). 
Then 

n 

E(N I CSP) = mum. (3.4) 
m =nO 

To obtain an expression for um, define 

Vrn,y = Pr(Ym = y) = E (m! / i!j! k!)7c71j(1 - J)k (3.5) 

where the sum extends over all i, j, k ? 0, i + j + k = 
and i - j = y; that is, i = (m + y - k)l2,j = (m -y - 
k)/2, and the sum extends over admissible values of k. Then 
for no ' m ? n - 1, one has 

Um = (1 - 7COi)Vm-I,n-m + ThOVm-li,n-m-r1 

+ (1 - 7Ci0)Vm-lr-n+m + OrOlVm-lr-n+m+l (3.6) 

and 

Un 1 - Urn. (37 
m =n0 
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Substituting (3.5) in (3.6) and making some simplification, one 
obtains for no m rnc n - 1, 

Um = {(1 -,)- - (rni)! 
k=n- 

- k _ n + k +Ik 

2) ( m 2 )I 
* (1 - 2t)k [ |(1 - gr)7t(n-k-1)127rm-[(n+k+1)f21 

+ (1 - 7)71m-[(n+k+l)/27r(n-k-1)/2] 

+ (n - 
( (1 )k 

k-n -k-2 n+ k 
- 

* [7. (n-k)/27,nm-f(n+k)121 + m-f(n+?k)/2]7(n-k)I2I} f(3.8) 

where Ik,n = 1 if k and n are both odd or both even and 0 
otherwise. Thus (3.7) and (3.8) give the exact distribution of 
N, and these together with (3.4) give an exact formula for 
E(N I CSP). It should be noted that (3.8) simplifies when one 
or more of the rij are zero. Thus when rlo = 1 or iot - 1, 
one has I and ui = O for i 3- no; when 7r=0 = 0, 
one has un = 1 and ui = 0 for i 7& n; when r = 1, one has 
for no ' m c n - 1 

(m - 1 7) 

X [,7fjn+l)/2Zrn-((n+l)/2I + 7gm-((n+1)/2I7Zgn+1)/2] 

if n is odd, 

( ( 1 i)! [7mn/2,n2 n7-(n/2) + 1rmo(n/2)gnI2] 

if n is even; (3.9) 

and finally, when 7ro = 0, 7rjo > 0, and 1 - 7r > 0, one has 
for no m c n - 1 

(r n )!( )2m-n-17nm 
Um (n - m)!(2m -n - 1)! (1 

+ (n -)10 (n - m - 1)!(2m - n)! 

(3.10) 

3.4 Wiener Process Approximation to 
the Expected Sample Size 

For large n, the random walk Yi can be approximated by a 
Wiener process, and expressions derived by Anderson (1960) 
can be used as approximations to E(N I CSP). From equation 
(5.13) of Anderson (1960) one obtains for large n 

c\ 
E(N I CSP) (d J )(1,V-7) E (- 1)(2i + 1) 

d p ~~~~~i=,O 

X [R(2(i + 1)c + in) - R(2ic- Pn)] 

+ an analogous expression 
with,ui replaced by -,u, (3.11) 

where ,u = 6/ir, 5 = 7r10 _ ol, (72 = 7r10 + 7i01 -(7fj - 

7rol)2 = - 62, c nlo d = -la, R(x) = [1 -(x)]/ 
+(x) is the Mill's ratio, and 4( I) and 0(b) are the standard 
normal distribution and density functions, respectively. 

The series (3.11) converges very slowly, but for large n, 
even with up to 200 terms in the series, it is much cheaper 
to compute than the exact formula and gives accurate results 
(but a bit on the low side). For example, for . = .* = .1, 
n = 7r* = .1, P* = .90, and n = 16, the exact value of 
E(N I CSP) is 14.628 and the Wiener approximation is 14.443, 
giving a 1.26% error. For5 = .* = .1, 7 = n* = .9, P* 

-.90, and n = 147, the exact value of E(N I CSP) is 132.962 
and the Wiener approximation is 132.557, giving a .305% error. 

4. PROCEDURE BASED ON THE SEQUENTIAL 
PROBABILITY RATIO TEST 

4.1 Description of the Procedure 
This procedure operates as follows: Continue taking one 

matched observation at a time on T, and T2 until the first m for 
which 

jx(m) - xmIj > d* (4.1) 
is satisfied, where 

loge( P*) 
l?ek1 - P * 

d* = the smallest integer ? (r* -* (4.2) 
1ge *_*J 

(For P* < 2 + .5*/27r*, in particular for .* = r*, define 
d* = 1.) Stop sampling when (4.1) is satisfied and select T1 
(T2) if X(m) > X(m X) < X(mI. 

This procedure is related to the Wald SPRT for an underlying 
hypothesis-testing problem. Consider a trinomial distribution 
having cells (1, 0), (0, 1), and (1, 1) U (0, 0), with respective 
cell probabilities of rlo, 7rol, and 1 - 7r. Then the foregoing 
procedure is exactly the Wald SPRT for the symmetric test of 
H1: iro = (7r* + 5*)12 and 7ol = (7* - .5*)12 versus H2: 
7ro = (7r* - 6*)12 and 7rio - (7r* + .5*)12, with the two 
error probabilities equal to 1 -P* and a direct correspon- 
dence between accepting Hi and selecting T1 (i = 1, 2). This 
procedure will be referred to as the SPRT. 

4.2 Probability of a Correct Selection 

Theorem 2. With the choice of d* given in (4.2), the SPRT 
guarantees the probability requirement (2.1). 

Proof. Using elementary random walk methods for finding 
the probability of ruin in the classical ruin problem (e.g., see 
Feller 1968, chap. 14, sec. 2), it can be shown that for any 
values of the 7rij, 

Pr(correct selection [ SPRT) = -/[ + ( 
_ 

, 

(4.3) 
Now for . > 0, (4.3) is strictly decreasing in r; and for 2t > 
.5, (4.3) is strictly increasing in .. Therefore the infimum of 
(4.3) over _ - z* and.- > 5 * iS achieved at X = lr* and 
.5 .5 (the so-called least favorable configuration; LFC). It 
is straightforward to check that this infimum ? P*, and in 
fact any d ? d*, will also guarantee (2.1). 
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4.3 Expected Sample Size 

Again using elementary random walk methods for finding 
the expected duration of the game in the classical ruin problem, 
which involves solving a system of difference equations (Feller 
1968, chap. 14, sec. 4), we can derive the formula 

f0J1 - - d 

d* l \' b 
E(NfISPRT) = for (3>O0 

(d*)2 for ( = 0. (4.4) 

5. PROCEDURE BASED ON THE 2-SPRT 

5.1 Description of the Procedure 

Kiefer and Weiss (1957) considered the problem of finding 
an optimal test that, for a simple versus a simple hypothesis- 
testing problem with given error probabilities, minimizes the 
expected total sample size at a third parameter point. Under 
certain conditions, they characterized such a test as a Bayes 
sequential test having convergent nonlinear boundaries; this test 
is a member of the class of generalized SPRT's (GSPRT's) 
introduced by Weiss (1953). In the symmetric normal and Ber- 
noulli testing problems, this also solves the problem of mini- 
mizing the maximum expected total sample size. 

For the problem of testing hypotheses on a Bernoulli param- 
eter, Weiss (1962) and Freeman and Weiss (1964) showed how 
the boundaries of the GSPRT can be computed by using the 
backward induction method. This algorithm, however, involves 
trial and error as well as considerable computations. Lorden 
(1976) proposed a procedure (referred to as the 2-SPRT) that 
is much simpler to implement and approximately solves the 
Kiefer-Weiss problem. Lorden's 2-SPRT will now be described 
in the context of this article's problem. 

Take one matched observation at a time on T, and T2 but 
consider only the untied observations, that is, the observations 
that result in outcome (1, 0) or (0, 1). Let Zi = 1 (0) if the 
ith untied outcome is (1, 0) [(O, 1)], and let Sm = 'L=1 Zi be 
the number of successes on T, among the first m untied ob- 
servations. The Zi are iid Bernoulli random variables with pa- 
rameter 0 = 7rI/7 = 2 + 1/272. Consider the symmetric test 
of H: 0 = 2 + A* versus H2: 0 = A-A* (where A* = 6*1 
27t*) with the two error probabilities equal to 1 -P* For 
convenience of notation, let 0, = 2 + A*, 02 = A - 5*, and 
0o = (0I + 02)/2 = . The 2-SPRT for this problem operates 
as follows: Stop after m < M [given by (5.3)] untied obser- 
vations and accept H2 (select T2) if 

t0o\Sm/i doN rSm 1 ii S- 010Ms 

07 k1 - Ol 2(1 -P*) 

that is, if 

m loge( 2 ) + loge 2(1 P*) 

log 1 - 2A*)} 

accept HI (select TI) if 

0/0\m/ 1 0\ m-Sm 1 

k021k1 -021 2(1 -P*)' 

that is, if 

Sm , m loge(1 + 2A*) - loge 2(1 - P*) (5.2) 

log,I + 2A*) 

If both (5.1) and (5.2) are not satisfied, then continue sampling 
until the number of untied observations is M, where 

M = the smallest integer 

?- (2 log [2(1 - P*)])/(log,(l - 4A*2)]; (5.3) 

at m = M accept HI (accept H2) if SM > M/2 (SM < M/2), 
and randomize with equal probability between the two decisions 
if SM = M12. 

5.2 Probability of a Correct Selection 

From Lorden (1976) it is known that this 2-SPRT controls 
the error probabilities at or below 1 - P* at HI and H2. The 
following theorem can now be stated. 

Theorem 3. The 2-SPRT guarantees the probability re- 
quirement (2. 1). 

Proof. The Zi (1 s i s m) admit a scalar sufficient statistic 
Sm for every m ? 1 such that the distribution of Sm has the 
monotone likelihood ratio property in 0. Thus the result of J. 
Ghosh (1960) applies, and we can conclude that the operating 
characteristic (OC) function, 

Pro{accept HI I 2-SPRT} = Pr0{select T, I 2-SPRT}, 

is nondecreasing in 0. But 0 2 + 3/27t is increasing in 6 
and decreasing in 7r. Therefore, since Pr0{select T, I 2-SPRT} 
? P at HI: 0 = 01, where = (5* and Xr = ,r*, the same 
holds for ( ? (* and or < i*. 

5.3 Expected Sample Size 

The expected number of untied observations required by the 
2-SPRT, E(No I 2-SPRT), can be evaluated by solving recur- 
sively a system of difference equations (the details are omitted). 
The expected total (tied and untied) sample size required by 
the 2-SPRT can then be obtained by using the formula 

E(N I 2-SPRT) = [E(No I 2-SPRT)]/71. (5.4) 

This method was used in the computer programs for making 
numerical comparisons between the 2-SPRT and its two se- 
quential competitors (this numerical study is discussed in Sec- 
tion 7). 

6. AN EXAMPLE 

Fertig et al. (1964) reported sequentially collected data on 
the presence (1) or absence (0) of topical mucosal anesthesia 
by using two topical anesthetic drugs, A and B, on the oral 
mucous membrane of the two sides of each patient's mouth. 
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Table 1. Presence (1) or Absence (0) of 
Topical Mucosal Anesthesia 

Drug Drug 
Patient Patient 

(in) A B X lO- X(N (Mn) A B X(i.'- X(N 

1 0 0 0 24 1 1 5 
2 0 0 0 25 1 1 5 
3 0 1 -1 26 0 1 4 
4 1 0 0 27 1 1 4 
5 0 0 0 28 1 1 4 
6 0 0 0 29 1 0 5 
7 0 0 0 30 1 1 5 
8 0 0 0 31 0 0 5 
9 1 0 1 32 0 1 4 

10 1 0 2 33 1 1 4 
11 1 0 3 34 1 0 5 
12 0 0 3 35 0 0 5 
13 0 0 3 36 0 0 5 
14 1 1 3 37 1 0 6 
15 1 1 3 38 1 0 7 
16 1 1 3 39 1 1 7 
17 1 1 3 40 1 1 7 
18 1 1 3 41 1 0 8 
19 1 1 3 42 1 0 9 
20 1 0 4 43 1 1 9 
21 0 0 4 44 0 0 9 
22 0 0 4 45 1 0 10 
23 1 0 5 

Source: Fertig et al. (1 964). 

The data were collected by Kutscher of Columbia University. 
Out of the 47 patients observed, 2 patients had missing data 
on drug B. Only the data on the remaining 45 patients is con- 
sidered here, and it is presented in Table 1. 

For illustration purposes only, suppose that these data were 
collected for the FSP with n = 45. From table I in Tamhane 
(1980), we see that n = 45 corresponds to (5* = .2, n* = .7, 
and P* = .95. [There are other triples ((5*, ir*, P*) that will 
also correspond to n = 45.1 These values shall be used to 
calculate the design constants of the SPRT and the 2-SPRT. 

First, let us apply the CSP with n = 45 to the data in Table 
1. It is seen that for m = 38, (3. 1) is satisfied for the first 
time. Thus sampling could have been termninated after the 38th 
patient, and drug A could have been selected as the more ef- 
fective anesthetic. This would guarantee the probability re- 
quirement (2. 1) with ((5*, rc*, P*) given above. 

Next let us apply the'SPRT. Substituting (5* = .2, 7t*= 
.7, and P* = .95 in (4.2) we get d* = 6. Thus the SPRT 
termninates with the 37th patient with the same decision as above. 

Finally, to apply the 2-SPRT, calculate the boundaries (5. 1) 
and (5.2) for Sm,-the number of times drug A beats drug B- 
where m is now the index of untied responses. The lower bound- 
ary is .5725m - 3.9174, and the upper boundary is .4276m 
+ 3.9 174. The cutoff limit for the number of untied responses 
is M = 55 from (5.3). It can be readily checked that Sm, first 
exits the upper boundary for the 38th patient (m = 13th un- 
tied response) when the upper boundary equals 9.4762 and 
Sm = 1 0. 

Thus in this particular example, all three procedures termi- 
nate at about the same point and reach the same decision. The 

7. PERFORMANCE COMPARISONS 

In this section, the performances of the three sequential pro- 
cedures are compared in terms of their E(N) values when they 
all guarantee the same probability requirement (2.1). To facil- 
itate the comparison, take the sample size n needed by the FSP 
to guarantee (2.1) as the benchmark and define the relative 
efficiencies (RE's) of the sequential procedures with respect to 
the FSP as follows: 

REcsp 
n 

REsPR = 
=E(N CSP) '= E(N I SPRT)e 

RE2-SPRT = E(N 2-SPRT) (7.1) 

Note that RE values greater than unity favor the corresponding 
sequential procedures over the FSP. The n values needed in the 
RE computations were taken from table 1 of Tamhane (1980). 

Computations were carried out for P* = .90; (* = .1, .3; 
and i* = .5, .7, .9. Analogous computations were made for 
P* = .95, but the results were similar and hence are not re- 
ported here. For each value of (*, three values of ( were 
considered: 5 = 0, (*, and n*. For each value of 7r*, three 
values of 7 were considered: n = max((, 7r*/2) (denoted by 
0* in Table 2), it*, and 1. The case i = I deals with the 
possibility that the experimenter's specification of the upper 
bound 7r on r is actually violated by the true r. The preceding 
nine combinations cover the possible range of ((5, ) values. 
The results of these computations are presented in Table 2. 

Inspection of the results shows that RESPRT and RE2-SPRT are 
higher than REcsp in almost all cases except when ( = 0 and 
Xt = 0* <it*. For favorable configurations (large values of ( 
and t), the RESPRT values are the highest (higher than those of 
RE2SPRT), whereas for unfavorable configurations (small values 
of ( and i), the RESPRT values are the lowest and the RE2-SPRT 

values are slightly higher. Thus in terms of the expected sample 
sizes, the SPRT and 2-SPRT are preferred over the CSP for 
favorable parameter configurations, with the SPRT gaining 
preference for more favorable configurations and the 2-SPRT 
gaining preference for somewhat less favorable configurations. 
But when ( is close to zero, RESPRT and RE2-SPRT are both less 
than unity, and from (3.3) it is known that 1 c REcsp ? 2 
always. Thus for ( close to zero, the SPRT and 2-SPRT are 
both less efficient than the FSP, with the SPRT being more so. 
This fact of course is well known for the SPRT (see B. Ghosh 
1970, secs. 3.6.1-3.6.2, or Wetherill 1975, p. 23); but for the 
2-SPRT (or more generally for GSPRT's), it is not as widely 
known. 

Perhaps more important is the fact that the CSP is a closed 
procedure requiring at most n observations whereas the SPRT 
and 2-SPRT are both open procedures in the present problem, 
the latter because of the possibility of ties. Thus although the 
E(N)'s required by the SPRT and 2-SPRT are smaller in fa- 
vorable configurations, the distributions of the N's are skewed 
to right (that for the SPRT being more so), resulting in occa- 
sionally large values of N, which could lead to bottlenecks in 
practice. The security afforded by the closed nature of the CSP 
is very reassuring in such cases, and therefore the CSP is rec- 
ommended as a useful practical procedure. 
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Table 2. Relative Efficiency of CSP, SPRT, and 2-SPRT With Respect to FSP for P* = .90 

7* .5 z*=.7 n* = .9 
* 7 1 * *a 1 7r* 

0* 
1 7** f* 

CSP 

.1 7* 1.482 1.494 1.494 1.700 1.694 1.694 1.887 1.888 1.888 
6* 1.113 1.105 1.100 1.117 1.106 1.100 1.103 1.106 1.100 
0 1.083 1.063 1.044 1.081 1.063 1.044 1.063 1.063 1.044 

.3 7r* 1.376 1.314 1.314 1.701 1.644 1.644 1.900 1.855 1.855 
6* 1.261 1.283 1.248 1.377 1.295 1.276 1.347 1.302 1.282 
0 1.194 1.183 1.124 1.291 1.193 1.133 1.244 1.194 1.133 

SPRT 
.1 7r* 6.769 6.750 6.750 9.975 9.975 9.975 3.230 3.230 3.230 

6* 2.507 1.610 1.367 2.141 1.742 1.451 1.927 1.824 1.502 
0 2.250 1.125 .563 1.781 1.247 .623 1.470 1.323 .662 

.3 7r* 2.813 2.250 2.250 2.831 2.800 2.800 3.600 3.600 3.600 
6* 2.453 1.530 1.350 1.644 1.364 1.201 1.420 1.360 1.204 
0 2.250 1.125 .563 1.333 .933 .467 1.000 .900 .450 

2-SPRT 
.1 7r* 5.669 4.500 4.500 7.319 6.650 6.650 9.147 8.820 8.820 

6* 2.796 1.623 1.196 2.155 1.665 1.229 1.807 1.685 1.243 
0 2.642 1.321 .661 1.935 1.354 .677 1.524 1.371 .686 

.3 7r* 2.385 1.500 1.500 2.446 2.100 2.100 3.017 2.880 2.880 
6* 2.254 1.238 .900 1.792 1.370 .964 1.642 1.528 1.109 
0 2.182 1.091 .545 1.631 1.142 .571 1.400 1.260 .630 

a * = max(6, n*/2). 

Theoretically the SPRT requires the smallest E(N) (and hence 
has the highest RE) when 7C = 7r* and 3 = 3* among all 
procedures guaranteeing (2.1) by the optimality result of Wald 
and Wolfowitz (1948). In the numerical computations, how- 
ever, the 2-SPRT achieves higher RE at this configuration in 
some cases-a discrepancy that can be explained by the fact 
that an excessive overshoot is caused by the upward rounding 
of d* [cf. (4.2)]. Some other comments on the numerical results 
are as follows: For any (3*, 7r*), if 7r is fixed then all RE's 
decrease as 3 decreases. This is of course no surprise, since 
any procedure that samples sequentially would require larger 
E(N) as the two treatments get closer in their success proba- 
bilities. Moreover, in most cases all three RE's increase as 7r 
increases for fixed 6. This happens because as 7r increases, each 
matched observation is more likely to yield different responses 
on the two treatments. Since large values of the statistic 
IX"n' - X"nl are favorable to an early termination of all three 
sequential procedures, they require smaller E(N)'s if Hr is large. 

[Received September 1981. Revised October 1984.] 
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